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FIXED ACCURACY ESTIMATION OF AN AUTOGRESSIVE PARAMETER

BY T. L. LAI and D. SIEGMUND

ABSTRACT

For a first order non-explosive autoregressive process with unknown

parameter c[-1,1], it is shown that if data are collected according

to a particular stopping rule, the least squares estimator of B is

asymptotically normally distributed uniformly in 0. In the case of

normal residuals, the stopping rule msay be interpreted as sampling until

the observed Fisher information reaches a preassigned level. The situation

is contrasted with the fixed ample size case, where the estimator has a

non-normal limiting distribution when 1 .1 -
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FIXED ACCURACY ESTIMATION OF AN AUTOREGRESSIVE PARAMETER

1. Introduction and Summary.

Consider the first order, non-explosive, autoregressive model

(1.1) xn =Xn + en (n = 1,2,...)

where cI,€2,... are independent, identicallj distributed random variables

with e 1 -0 and 0< 2 a < -. The initial state x0  is a random

variable (not depending on B) which is stochastically independent of {n }.

The constant Bc[-l,l] is an unknown parameter, which at stage n is

customarily estimated by the least squares estimate,

n n n n
(1.2) bn (1 E XX)/(r x 2- + ( x )/(Zx 1 2

If the c's are normally distributed, then bn is also the maximum likeli-

hood estimator of $, and the observed Fisher information about $ contained

in XOX 1 .. .,xn is

d 2 n 2 n 2 n 2
(1.3) -- [0 E Xlx 1 /2 x_ 1 ] Z x_ 1dO2  imi Ii iml

It is well-known and easy to prove that for fixed Oe(-I,I), as

n ) 1/2 2(1.4) (Ex i-1 (b n-0) Z a(O'0 )

Here N(ja 2) denotes a normal random variable with mean pi and variance

S2, and indicates convergence in law. See, for example, Anderson (1959).
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However, for B = _1, an entirely different limiting distribution occurs

(Rao, 1978). For example, if B " 1, xn - z0  is the sum of i.I.d. random

variables C1 + ".. + Cno and summation by parts in (1.2) yields

n 2  .1 2 (b -1) -l (x2 2 _ n 2)/(n-2 2 2 /2

i-i n 2 n-xO E)/n

1
By Donakr's theorem this converges in law to

(1.5) a(W () -l1/( f W2 Wtdt) 1/2 ,
0

where {W(t), 0 < t < 1) is a standard Brownian motion process. Of course,

this result indicates that the asymptotic normality of (1.4) breaks down for

B in a neighborhood of +1, in the sense that for any given n, no matter

how large, there will be a neighborhood of +1 in which one should not expect

(1.4) to yield reasonable approximations.

Examples in econometrics having values of S close to 1 are cited by

Evans and Savin (1981) and by Fuller (1981).

In this paper we consider the asymptotic behavior of (b n} under a

sequential sampling scheme which measures time in terms of accumulated

(observed) Fisher information. Define

n 2  2(1.6) N - first n > I such that 2 -Ex >ca

Our principal result (Theorem 2.1) is that as c 4
N

(17)c 2 1/2 (,2)
(1.7) (i)/ (bS -B) X N(O,a

1 c

uniforaly in B for -1 <B 1.
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The sampling rule (1.6) is motivated by the theory of fixed width

confidence intervals, cf. Anscombe (1953), Chow and Robbins (1965), or

Grambuch (1982). Some precedent for the rather surprising uniformity in

the convergence of (1.7) is found in the work of Siegmund (1981), although

the underlying reasons are quite different in the present case.

When it is feasible to use the sampling rule (1.6), its advantages

appear to be threefold: (i) the accuracy of bN as an estimator of B (as
c

measured by the variance of its asymptotic distribution) is approximately a

small constant c - , rather than an uncontrolled random variable, (ii) the

appropriate asymptotic distribution th~eory does not depend on the value

of the unknown purameter B; and (iii) the convergence to asymptotic normality

is much more rapid, even when 8 is not near the values +1. (See Section 3.)

The remainder of this paper is arranged as follows. Section 2 contains

a proot of (1.7). In Section 3 we give the results of some simulations

comparing confidence intervals obtained by indiscriminate use of (1.4) for

fixed sample sizes with (1.7) for sequentially determined sample sizes.

Section 4 is concerned with some related asymptotic results, and in particular

the appropriate modification of (1.6) when a is unknown.

Partial results for the model xn - a + Ox1 + Cn indicate that the

multiparameter case can be appreciably more complicated. We expect to

consider this problem in the future.

2. Uniform Asymptotic Normality of b.
c

The main result of this section is the proof of (1.7) (Theorem 2.1

below). Our approach is motivated by the observation that b- B -
n n
E xtt E xt 1  is of the form of a martingale divided by the sum of
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the conditional variances of its increments. The novelty of our approach

lies in systematic exploitation of the condition (2.6) and the simple

identity (2.16). We begin with same preliminary probabilistic results.

Propositibn 2.1. Let In' C, n - 0.1,... be random variables adapted

to the increasing sequence of a-algebras an' n o 061p.s. . Let

{Po' } be a family of probability measures such tha. under every P0

2(2.1) £1 ,C2 ,... are i.i.d. with ReCi - O s e * 1 !

(2.2) sup E -{ce;Icil > a) - 0 as a-
e

(2.3) C is independent of 3,-, for each n >1 

(2.4) 2 2 1

2
(2.5) sup P{x, > a} 0 as a+ for each n>0 ;

(2 n-i 2

(2.6) 1a [sup P8{x> z 8 x for some n m}] -0

For c > 0 let

(2.7) T€ - inffn: Ix 2 c) (inf +)
1 1-1

Then uniformly in Oe. and -< < t < m1/2 T
(2.8) {€c-l 2  Exi 1  i C t) 0(t) as c .

0 i-4



Remark. For the autoregressive model (1.1), if we identify e with

the autoregressive parameter 0, all the conditions of Proposition 2.1

are trivially verified, with the single exception of (2.6).

Proposition 2.1 is proved by reducing it to the following convenient

martingale central limit theorem (cf. Freedman, 1971, pp. 90-92).

Lemma 2.1. Given 0 < 6 < 1, there exists P(d) > 0 with lim P(6) - 0
6 .0

such that for any martingale difference sequence {un, 3n* n > 0) satisfying

(2.9) lUn < 6 for all n

and

-(2.10) Z. E(Un _1 ) > r a.s.

~n

if T = inf(n: E E(u2I i) > r), then P{T < m} =1
1

and

SupIP{Z ui C x) - O(x/rl/2)i < p(6/r112)
x 1

Proof of Proposition 2.1.

By (2.4) P{Tc < co - 1, and obviously P{ limTc m} T 1 for
e c c and ft c6

all e. Let 0 < 6 < 1 and define n Xn if x 2 < 62c and n 6 c 1 / 2

otherwise. Then for all 9

P {x Xn for some n < T

{x > 6 C P c ' Tn n for soum < n < T)

m 2 n-

Pe(xi- > c) + pe{ X2 >6 E for some n>a) ,

iul n- 0
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which is < 26 if w first choose a large enough and use (2.6), then

choose c large and use (2.3). Bnce if

S(xn'-i forall n<'rT} ,

then for all large c

(2.11) P(Ac) > 1 - 26

Define .- 1%1 < 6--112. Then under P,

{c-(/2nl-Z ), 3n, 0 < n < -) Is a martingale difference sequence

satisfying

l-1/2-,1 -. ) _21/2.
C' cx~ (- n'E0 ) I < 261/

and by (2.4)

-2)

also by (2.2), as 6 -0 0

(2.12) v0 (6) - var0 1  1

uniformly In e. Hence, if

n 2tc nf~n" E- > C})

then by Leme 2.1

6
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(2.13) IP{c'1/2 E i- 0 E~) <t)- *(t/(vM(6))1 /2) I <_ p[2(6/v ())1/2 1
1

On fa Tc T and

(214T T
(2.14) JiE i_ (9i-E a - E x _i-1C l - Iz il( ±-Ee i)I

1 1 1

By Wald's identity (cf. Chow, Robbins, and Siegmund, 1971, p. 23)

Eo 2 l2-l -2

(2.15) E~ e c(1-ve(M E( i-l
1 (1-ve(6))(1+8 2 ) 1

The Proposition follows from (2.11)-(2.15) by letting 6 - 0.

For ease of reference we state without proof the following lemma.

It is related to the strong law of large numbers given e.g. by Neveu

(1965, p. 148), whose method of proof can be adapted to the present purpose.

Alternatively it follows easily from Proposition 2 of Robbins and Siegmund

(1971) and a straightforward calculation along the lines of their Lema 1.

Lemma 2.2. Under the measurability assumptions of Proposition 2.1, (2.1),

and (2.3), for each y>1 and increasing sequence of positive constants

c + +m, and for each 6 > 0
n

n n 2
sup Pe{E xil ij >_ 6 max (c n.(E xi_1 )Y) for some n > m) 0

as M.

We now return to the autoregressive model (1.1) and write P to denote

dependence of probabilities on the parameter 0. (The joint distribution of
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X 0*Cl-C2 1 *~ however, is assumed not to depend on .)The principal

result of this section is

Theorem 2.1. Define (b. an - 2.3,...) by (1.2) and N C by (1.6).

If C IsC2,.. are i.i.d. with mean 0 and variance a 2 and are

independent of x0 9 then

N

lim P {(E. 3 2l)(bN 8 i 9to

uniformly for -1 <8<1 and -s< t <.

Proof. Theoren 2.1 follows itmediately from Proposition 2.1 once we have

verified (2.6). To this and, note that squaring (1.1) and smmuing yields

(2 16 2 n-i 2 2 n 2n

+(1-8) 1 ~- 0 -c +

Let 181 < 1 and 0 < A< c/A. Let

(.)Q-n 2_ 21< A.Inn 2  2/3
(2.1) 0 M I {n- E Ci- a , lE x 11 CiI max(Xn,(E x i_)) for all n >a)

1 1 1

On 9Q., if n > a and xn < An, then (2.16) implies

n-i 2 2_2a n 2 2/3
E X > (r X)a - n - max(An, (E xiLi)

and hence for all a sufficiently large

(2.19) 2 n E x 2 > (CF -AX)n > (a 2 XJi-4)x 2
0 1n



On the other hand, since ixn~l > oXn-lI > IXn - 1en, it follows

that

k-i k-i
m n I - l Ixnl- -r I U -I Ixnl1 - j lej )

l<j <k -j=0 n- -=0

if x > Xn. Hence n > k and x2 >X n imply
n n

n-i 2 2 2 k-i 1/2

(2.19) Z x_i/xn > k2{l - Z. Ie .j/(Xn)I '2}
0- -0 n-j

k-i
and since Zr le nj, n - k,k+l,... are i.i.d. with finite second moment,

J=0

the right hand side of (2.19) converges to k2 with probability one, at a

rate which does not involve $. Hence by choosing A so small that

2/02X-i-4) < 6 and k 2 > 1/6, we see by (2.18) and (2.19) that

2 n-i 2
lum sup Pa{X > E X i  tar some n > m)

< him sup Pa(fc )

which equals 0 by Leuma 2.2 and the strong law of large numbers. This

establishes (2.6) and hence the theores.

3. Monte Carlo Results.

In this section we report the results of a Monte Carlo experiment to

compare the fixed sample size and sequential asymptotic distributions. The

basic experiment to assess the accuracy of the normal approximation indicated

9



by (1.4) and (1.7) consisted of a frequency count of the number of times

the normalized estimator of $ exceeded z or was less than -z for

commonly used quantiles z of the standard normal distribution. Since

very similar results were obtained for various z, we report here only

for z - 1.28, for which the (one-tailed) probabilities are nominally

0.10. For simplicity x0 M 0, and £lE2,... were taken to be N(0,1).

In the fixed sample experiment, n = 50 observations were taken; and the

results are reported in Table 1. In Table 2 observations are taken

sequentially with c chosen so that E Nc Z 50 for all 8; in Table

8cc3 c - 50 and E aNc varies with B

For normally distributed ci, bn (bN ) fails to be normally distributed
c

n2 Nc 2only because of variability in Z xi-1 ( x i_l). (See Dvoretzky, 1972, p. 520)

Of course, the sequential experiment is designed to reduce this variability.

The columns of Tables 1-3 below with the headings axx and Sxx report

2
the observed average and standard deviation of Ex 2_ respectively.

i-12
Variability for Ex 2_ in the fixed sample experiment goes into variability

i-I

in Nc  for the sequential experiment, so Tables 2 and 3 also report estimates

of Eec and (var8Nc)l/2. Note that variability in Ex _1 for the fixed

sample size case and (var c /2/ENc for the sequential case increase

dramatically as 8 approaches one.

The columns headed Pr and p£ report the percentage of excesses in

the right and left tails of the distributions.

The figures in Tables 1 and 2 indicate that the fixed sample size

asymptotic theory is not especially good when n - 50, even for small 11,

10



TABLE 1

SL-ad Sample Case

m 50, z - 1.28, p and p, are nominally 0.10

Pr Pt axx 8xx

0.1 .084 .108 49 10

0.5 .086 .118 65 18

0.9 .052 .136 232 136

1.0 .048 .166 1272 1505

TABLE 2

Sequential Case

z = 1.28, pr and pt are nominally 0.10

S r Pt c a EN c(var N) '

0.1 .094 .105 50 52 1.7 52 10

0.5 .103 .096 65 67 2.2 52 13

0.9 .103 .099 200 207 8.0 51 21

1.0 .098 .101 500 524 22 48 24

TABLE 3

Sequential Case

c 50, z 1.28, pr and p. are nominally 0.10

0 Pr a s 8(N) (var )l/2

pr t xx 'xx B0 Nc O'

.5 .097 .099 52 2.4 41 11

.9 .092 .102 55 5.4 20 9.0

1.0 .108 .107 58 8.2 16 7.6

1.1 .096 .093 61 10 13 5.9

!Ii 11



and it deteriorates quite noticeably for B near 1. In the sequential

case the asymptotic theory in much better and showe no dependence upon

the value of 8.

4. Additional Asymptotic Theory.

Here we give some additional asymptotic results, which follow from

the techniques developed in Section 2. Theorem 4.1 describes the asymptotic

behavior of Nco and to some extent explains the rather surprising differences

between the fixed sample and sequential cases. Theorem 4.2 is concerned
n 2

with the uniform strong consistency of b and 82 - n-1 E (x bn x ) .

It provides the foundation for consideration of the case of unknown a.

Theorem 4.1. Under the conditions of Theorem 2.1,

(1) for each P(-l,1), lm c-Nc a (1-0 )1 1,

and

(ii) for ji - , 1C- 2 N + inf{t:J W2 (s)ds - 11,
0

where W(t), 0 < t < -, is a standard Brownian motion process.

Remark. In addition to containing information on the sample size of our

sequential procedure, Theorem 4.1 has interesting connections with Theorem 2.1

and a theorem of Anscombe (1952). As generalized by Nogyortdi (1962) Anscobe's

theorem says that if Yn * Y , sone additional technical conditions are satisfied,

and if v(c) are integer-valued random variables which can be normalized

by constants k(c) - +. in such a way that v(c)/k(e) converges in

probability to a positive random variable, then Y f Y. Bence (1.4),
V(1)

Theorem 4.1 (1), and Anscombe's theorem show that x2) 1 2 (b 11.,

12



for each fixed (-1 .1) However, because the convergence of Theorem

4.1 (i) is in law and not in probability, Anscombe's theorem is not

applicable for 1BI - 1, and in fact its conclusion would be incorrect.

Proof of Theorem 4.1.

On the event ,. defined in (2.17), (2.16) impliea for all n > m
MX

(4.1) -x 2 + 2 x 2  < 21n 2  2/3

2 2If 1B is bounded away from 1, say 11 < 1, so 1 - 02> -P > 0,

then (2.6), (4.1), and P(a, 1 (uniformly in B) imply that

(4.2) lira sup B{(-2) n - 1 n 2 _21

(4.2) im sup P for some n > n} 0
m -b a 101 < P -

Theorem 4.1 (i) follows easily from (4.2).

If 8 - 1, then xn a x0 + S n, where Sn = C 1 + ... + Cn. Thus

Theorem 4.1 (11) follows from Donaker's Theorem, which implies that

1 [c 12  2 t
{c -  E Si , t > 0) * {a 1w s)ds, t > 0)

i-1 0

A similar but slightly more complicated argument handles the case 8 = -1.

Theorem 4.2. Define the least squares estimate for B as in (1.2), and

in the case of unknown o, estimate a2  at stage n by

(4.3) a2 n n l (ziLb n xi-1)2n

" Then b and 2 are uniformly consistent f or I 81 < 1 in the sense that

for all 6 > 0

13I _ _ _ _ _ _



(4.4) 1M sup P lb_ - 1 > 6 for some n > a} - 0
-l- * 181 <

and

(4.5) li < sup P{lIa2-0 2  a for some n > - 0

Proof. From (2.6), (2.16), and (4.2) it is easy to see that for all

0 < A < 1

up P2 < E - o2  for some n >m ) 0 (m ) ,
I <

which together with (1.2) and Lemma 2.2 proves (4.4).

To prove (4.5) note that

-12 -1 n 2
n a S (i + (B-b)xi-1)

iml

(4.6)

n-1 c 2 - n 2 n 2x i - x i - "

For 101 - , 1 _ Ix0 + E Ic1I - Un, say, where the distribution of
1 2 -1 2 .

Un  does not depend on 0. Moreover, E U o(n) with
1 0 k

probability one. Hence by Lmma 2.2

i. sup P M(x X~C) > 1 for some n >a) -0
mIItc 1 11 -

which along with (4.6) and the strong law of large numbers implies (4.5).

With the help of (4.5) it is possible to modify the defiltion of Ic

to handle the case of unknown a. The following result can be proved along

14



the lines of Theorem 2.1, although the details are considerably uore

complicated. The proof Is omitted.

Theorem 4.3. Define b~ by (1.2) and &2 by (4.3). Let (61be annn

sequence of positive constants with 0 . L~et 2~ max(6 a.) and
n a'

V for c > 0 define

(4.7) N- inffn: n > 2, E - es n

1

Then as c

N.
P {(Ec x 2 1) (bi 80)/Gy-< t1 O(t)

1C Nc

uniformly in < 1~ and i< t <.

Si
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